Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Sci Data ; 10(1): 367, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20232780

ABSTRACT

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 epidemiological data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, vaccine data, and key demographic characteristics.


Subject(s)
COVID-19 , Humans , Air Pollution , COVID-19/epidemiology , Pandemics , Environment
2.
Lancet Digit Health ; 4(10): e738-e747, 2022 10.
Article in English | MEDLINE | ID: covidwho-2086897

ABSTRACT

Infectious disease modelling can serve as a powerful tool for situational awareness and decision support for policy makers. However, COVID-19 modelling efforts faced many challenges, from poor data quality to changing policy and human behaviour. To extract practical insight from the large body of COVID-19 modelling literature available, we provide a narrative review with a systematic approach that quantitatively assessed prospective, data-driven modelling studies of COVID-19 in the USA. We analysed 136 papers, and focused on the aspects of models that are essential for decision makers. We have documented the forecasting window, methodology, prediction target, datasets used, and geographical resolution for each study. We also found that a large fraction of papers did not evaluate performance (25%), express uncertainty (50%), or state limitations (36%). To remedy some of these identified gaps, we recommend the adoption of the EPIFORGE 2020 model reporting guidelines and creating an information-sharing system that is suitable for fast-paced infectious disease outbreak science.


Subject(s)
COVID-19 , COVID-19/epidemiology , Forecasting , Humans , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL